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Abstract. Let R be a non-commutative ring with 1, and M is a (left) R–module. We 
introduce the concept of primary submodule over non commutative ring as: A proper 
submodule N of an R-module M is said to be primary submodule if 0≠N and 

)()( NrannNrann = for each NN ⊆ . We list some basic properties of this concept.  
We also defined the concept of p-compactly packed submodule over non-commutative ring 
as: A proper submodule N of an R-module M is said to be p-compactly packed submodule if 

0≠N and for each family { } Λ∈ααN of primary submodules of M with 
α

α
NN

Λ∈
⊆ ∪ there 

exist Λ∈β such that βNN ⊆ . We study some various properties of p-compactly packed 

submodule over non-commutative ring. 
 

Keywords: radical annihilator of an R-module, prime submodule over non commutative ring, 
primary radical of a submodule over non-commutative ring, p-compactly packed submodule,  Bezout 
module. 
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Abstract—	Clustering	by	compression	is	a	powerful	tool	that	uses	compression	

information	to	classify	digital	objects	and	that	does	not	rely	on	any	knowledge	or	

theoretical	analysis	on	the	problem	domain	but	only	on	general-purpose	

compression	techniques.	In	this	paper	we	review	the	clustering	by	compression	

approach	and	show	some	testing	results	we	have	obtained.	

Keywords—data	compression,	clustering,	classification.	

	

	



Cache-cache elements preconditioning technique 
for solving large-scaled nonlinear mechanic problems 
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Abstract: 
We consider Krylov subspace methods for solving linear systems of equations which stem from large-
scaled nonlinear mechanic problems by cache-cache elements method on parallel computer with 
distributed memory. For speed-up of parallel computation, it is necessary to shorten the  
communication time among processors. However, in parallelized Krylov subspace methods,  
global synchronization points for inner products cause increment of communication time. 
Thus, we created the strategy for reduction of synchronization points  
of parallel Krylov subspace methods. We transform the computation of a certain parameter to reduce  
the number of synchronization points of various Krylov subspace  
methods per one iteration. 

In our talks, we apply this strategy to three-term recurrence and propose parallel BiCGMisR method as 
the effective solver by means of ``cache-cache'' in French (it means ``hide and seek'' in English)  
elements method suited to parallel computer with distributed memory. Furthermore, through several 
numerical experiments, we make clear that parallel BiCGMisR method outperforms other methods 
from the viewpoints of both elapsed time and speed-up on parallel computer with distributed memory. 

	
	
	



Outer Approximation of the Set of Hurwitz
Polynomials†

Gökhan ÇELEBİ1,∗ Taner BÜYÜKKÖROĞLU1 Vakif DZHAFAROV1

Abstract

Let a monic polynomial p(s) = sn + ans
n−1 + . . . + a2s + a1 be given. This polynomial

can be identified with the point p = (a1, a2, . . . , an)
T ∈ Rn. Hurwitz stable polynomial is a

polynomial with roots lying in the open left half of the complex plane. A necessary but not
sufficient condition for stability is that all of a1, a2, . . . , an are positive. It is well known that
the set of Hurwitz vectors p is open, unbounded and nonconvex [1, 2].

In this report we approximate the open-left half plane by the half disc Ω = {z : |z| <
r Rez < 0}, where r is sufficiently large and consider Ω-stability problem instead of Hurwitz
stability [3]. It is shown that the set of Ω-stable vectors p = (a1, a2, . . . , an)

T ∈ Rn is finite-
generated, that is the convex hull of this set is a polytope with known extremal points. This
set is an outer approximation of the Hurwitz set. In the report an application of this result
to stability problem for continuous-time systems is considered. Namely, consider a family of
parametrized n th order monic polynomials p(s, c) with uncertainty parameter c ∈ Q ⊂ Rl ,
where Q is a box and p(s, c) depends on the parameter c linearly [4]. Is there exist c such
that the obtained polynomial p(s, c) is stable? Such c is called a stabilising parameter. In the
report some condition for the existence such c are obtained. Number of numerical examples
are considered.
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Abstract 
This work presents some meromorphic functions which have the same results as the Riemann 

zeta function. Matrix representations of these functions are also obtained through which the 

general form of the point spectral and the trace of the Riemann zeta function were generated. 

The Riemann Zeta function and its Analytic Continuation function are presented as function 

with real and imaginary parts. By this The Riemann Zeta function and its Analytic 

Continuation function are transformed into their Matrices equivalents. We are also able to 

valuate ! ! ! ! =  !!(!)+ !!(!). By writing ! ! ! !  as a bilinear function, and through 

the use of Sobolev Space theorem, an optimization problem with a variable coefficient is 

derived. Some methods of solution are presented. 

Keywords: Meromorphic, Riemann Zeta function, Matrix Sobolev Space, Spectral Point, Trace 

Ope_taiwo3216@yahoo.com 



Stochastic fractal interpolation function with

variable parameter

*I. Somogyi

1
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1 Department of Mathematics, Babeş-Bolyai University
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Department of Mathematics, Babeş-Bolyai University

The classical methods of real data interpolation can be generalized

with fractal interpolation. This paper study the fractal interpolation

function in the case when the scaling parameter is a variable param-

eter. Let the pair {X,F} be an Iterated Function System. Also

consider a data set (xi, yi), with strictly increasing abscissae. Let

I = [x1, xn], Ii = [xi, xi+1], for i 2 Nn�1 = {1, 2, ..., n � 1} and

Li : I ! Ii be contraction homeomorphisms such that Li(x1) =

xi, Li(xn) = xi+1. Suppose that 0  !i < 1 for i 2 Nn�1 and

consider continuous maps Fi : I ⇥ R ! R satisfying

Fi(x1, y1) = yi, Fi(xn, yn) = yi+1,

|Fi(x, y)� Fi(x, Y )|  !i|y � Y |, x 2 I, y, Y 2 R.
The IFS used in the study of fractal interpolation functions starts

form the following maps: Li(x) = aix + bi, Fi(x, y) = ↵iy + qi(x),

where ↵i, i 2 Nn�1 is a variable parameter with the values in the in-

terval (-1,1). In this case we will study the existence of the stochastic

fractal interpolation function.

Keywords: Iterated function system, Fractal function, Fractal inter-

polation, Stochastic fractal function.

2000 AMS Subject Classification: 28A80, 37L40
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On Stabilization of Discrete Time Systems†

Taner BÜYÜKKÖROĞLU1,⇤ Gökhan ÇELEBİ1 Vakif DZHAFAROV1

Abstract

Given a monic polynomial p(s) = sn+ans
n�1

+an�1s
n�2

+. . .+a2s+a1 which corresponds

to n-dimensional vector p = (a1, a2, . . . , an)
T
. The polynomial p(s) is called Schur stable if

all roots of the polynomial p(s) lie in the open unit disc of the complex plane. Schur stability

plays an important role in the stability of discrete time systems [1]. It is well known that the

set of Schur stable vectors p is a finite-generated set in the n-dimensional space, that is its

convex hull is a polytope with known extreme points [2].

We consider the application of this property for stabilization of a discrete-time single-

input single-output system. Consider a transfer function G(z) =

g(z)
f(z)

, and a controller

C(z) =
q(z, c)
p(z, c)

where c = (c1, c2, . . . , cl)
T 2 Rl

is the uncertainty vector which enters linearly

in the numerator and denominator. The corresponding closed loop system has characteristic

polynomial a(z, c) = f(z)p(z, c) + g(z)q(z, c). The problem is determination the values of the

parameters c such that the polynomial a(z, c) is Schur stable. This c is called a stabilising

vector. This problem has been considered in the works [3, 4].

In this report we consider this problem from the convex analysis point of view. Conditions

for the existence of a stabilising vector are obtained. By using linear programming the minimal

box of the uncertainty vectors is determined. Number of examples are considered.
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Abstract 
Most of the non-profit organisations generally follow non standardised costing mechanism. 
No specific method constitutes the basis for determination of their cost structure. 
Development of standardised cost structure based on scientific method is highly essential 
for any organisation irrespective of the nature and scope.  
Linear Programming helps in optimal utilization of various existing factors of production 
such as installed capacity, labour availability, supply of raw materials, and such other 
factors. Linear programming as an optimisation tool has been in use over centuries in the 
supply chain operations in manufacturing organisations. Supply chain planning, to a large 
extent, starts with forecasting. Matching supply and demand is an important goal for most 
of the firms and is at the heart of operational planning. 
In this context, the current study focuses on formulating a scientific cost structure 
pertaining to ice cream producing units, applying linear programming technique. The 
designed cost structure thus can be used as a standardised measure in all ice cream 
manufacturing units of small and medium firms, for optimising the goals.   

Keywords: Linear, cost, demand forecasting, constraints, Scientific, Supply chain.



Geodesics on the Sierpinski Gasket with respect to
the intrinsic metric:

An algorithm to calculate the distance

Yunus ÖZDEMİR1,∗, Bünyamin DEMİR1, Mustafa SALTAN1

Abstract

The Sierpinski Gasket (also known as the Sierpinski Triangle) is one of the most important
fractals. In the literature there exist some works to compute the shortest distance between
any two points of the discrete Sierpinski Gasket (see [3] and [4]). We explicitly define the
intrinsic metric on the Sierpinski Gasket by which we determine the geodesics on SG. In order
to describe the points on the Sierpinski Gasket there is a particular way so-called code space.
We classify its geodesics due to this code space representation of the Sierpinski Gasket. In
this work, we also present a source code of an algorithm, written by using the mathematical
software Maple 18, which gives the distances between any two points of the Sierpinski Gasket
with respect to the intrinsic metric. We then easily determine the geodesic classification of
points on the Sierpinski Gasket by this algorithm.
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Graph-Directed Affine Fractal Interpolation
Functions

Ali DENİZ1,∗ Yunus ÖZDEMİR1

Abstract

It is known that there exists a function interpolating a given data set such that the graph of
the function is the attractor of an iterated function system which is called fractal interpolation
function [1]. These functions have been widely used in various fields such as approximation
theory, image compression, modeling of signals and in many other scientific areas [4],[6]. We
generalize the notion of fractal interpolation function to the graph-directed case and prove that
for a finite number of data sets there exist interpolation functions each of which interpolates
corresponding data set in R2 such that the graphs of the interpolation functions are attractors
of a graph-directed iterated function system.
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